Tumor-targeted CD28 bispecific POWERbodyTM for safe and synergistic T cell-mediated immunotherapy

2022 AACR Annual Meeting, Abstract Number 2888

BACKGROUND AND SIGNIFICANCE

Targeting CD28 by TGN1412 agonist antibody for systemic T cell activation resulted in a near-fatal clinical disaster due to severe cytokine storm and multiorgan failure. However, tumor specific CD28 T-cell engager (TCEs) in TAA \times CD28 bispecific format, similar to the clinically validated TAA \times CD3 bispecific TCEs, offers an attractive solution to mitigate the serious safety concerns associated with systemic CD28 activation while delivering potent T-cell costimulatory signal. Our goal is to combine tumor specific bispecific TCEs engaging both CD3 and CD28, the two key and synergistic pathways in T cell activation, for safe, potent, and durable T cell-mediated synthetic immunotherapies.

Following our success in utilizing the CD3 TCE POWERbody[™] platform for tumor targeting with tight safety control, we further applied our suite of three-body technologies to develop tumor specific CD28 bispecific TCE POWERbody programs (Fig 1). Our NEObody[™] enabled us to identify the species cross-reactive anti-CD28 antibodies targeting a unique and conserved epitope of CD28 in combination with the precision masking of antigen binding sites using SAFEbody[®] technology for conditional activation in tumor microenvironment (TME).

Our data show that the tumor specific TAA \times CD28 bispecific TCE POWERbody has achieved the following targeted product profiles: 1) anti-CD28 NEObodies targeting unique epitopes of CD28 with species cross-reactivity against human, monkey and mouse CD28 for high fidelity translational studies; 2) the anti-CD28 are NOT superagonist, but activate T cells only in the presence of the primary TCR signal; 3) Tumor specific bispecific B7H3×CD28 and HER2×CD28 induce potent T-cell co-stimulation; 4) these TAA×CD28 bispecific antibodies show synergistic T cell-mediated tumor cell killing in combination with TAA×CD3 TCEs and/or with checkpoint inhibitor anti-PD-1 in vitro; 5) these bispecific antibody B7H3×CD28 can synergize with masked HER2×CD3 ADG138 Powerbody to mediate strong antitumor efficacy; 6) masked tumor specific CD28 bispecific antibodies are further developed using SAFEbody technologies to increase tumor specificity by conditional activation in TME.

TAA×CD28 Antibody

TAA binding arm

CD28 binding arm

Heterodimeric mutations

Fig 1. Tumor-targeted CD28 bispecific antibody. The structure of the bispecific antibody TAA×CD28 is shown here.

RESULTS

Anti-CD28 antibodies with varying binding affinities and mouse cross-reactivity

Binding to recombinant human CD28 Binding to recombinant mouse CD28 (450 nm) .00 (420 (420 -8 -12 -11 -10 -9 -7 Log (Ab) [M] Log (Ab) [M] Fig 2. Binding to recombinant human or mouse CD28 by representative Adagene

anti-CD28 antibodies, as determined by ELISA. Multiple antibodies exhibit crossreactivity to both human and mouse CD28.

Fig 3. (A) In vitro stimulation of human T cells by anti-CD28 antibodies in the presence of anti-CD3 (OKT3). T cell proliferation (upper) and IL-2 secretion (lower) were examined as readouts of T cell activation. The results indicate that all Adagene (ADG) anti-CD28 antibodies can co-activate human T cells in the presence of anti-CD3, similar to a commercial anti-CD28 (clone CD28.2), or a reference anti-CD28. (B) The superagonist activity of anti-CD28 antibodies were examined with a dry-coat PBMC assay. All test antibodies were dry-coated onto the wells of 96-well plate and incubated with human PBMCs. The PBMC proliferation was determined by a CTG assay. The results indicate that Adagene anti-CD28 antibodies behaved similarly as a reference antibody without superagonist activity, whereas TGN1412, a superagonistic anti-CD28, significantly stimulated PBMC proliferation in this assay.

positive cancer cells SK-OV-3, by HER2×CD3 and HER2×CD28 TCEs alone or in combination. Non-competing HER2 were used in the HER2×CD3 and HER2×CD28 bispecific antibodies.

¹Adagene Inc., Suzhou, China, ²Adagene Inc., San Diego, CA, USA

RESULTS

Fig 5. (A) Stimulation of T cell mediated killing of LNCaP cells by B7H3xCD3, HER2xCD28, or the combination. The results demonstrate that HER2xCD28 can greatly enhance the cytotoxicity of B7H3xCD3 TCE. (B) In vitro human T cell mediated killing of HER2-expressing MCF-7 cells induced by HER2xCD3, HER2xCD28 or B7H3xCD28, and the combinations. The results demonstrate that both HER2xCD28 and B7H3xCD28 can significantly enhance the cytotoxicity of HER2xCD3 TCE. In A and B, non-competing HER2, or B7H3 were used in the CD3 or CD28 TCEs.

tested at fixed concentration. IL-2 (A) and IFN-γ (B) levels were measured in the supernatants following the co-culture. The results indicate that combination of B7H3xCD28 and anti-PD-1 or anti-PD-L1 can cooperate to enhance T cell activation.

SUMMARY

- Through Adagene's NEObody platform, anti-CD28 antibodies with varying affinities were developed that target unique and conserved epitopes of CD28 with broad species cross-reactivity against primate and mouse CD28.
- ADG anti-CD28 lead antibodies can co-activate T cells in the presence of priming signals such as anti-CD3, but did not show superagonist activity.
- Tumor associated antigen (TAA)×CD28 bispecific antibodies were developed, such as B7H3×CD28 and HER2×CD28, to deliver potent T-cell costimulatory signal in tumor microenvironment with high expression of these TAAs.
- When combined with TAA×CD3 TCEs in vitro, these TAA×CD28 bispecific antibodies exhibited much enhanced T cell signaling activation and T cell-mediated tumor cell killing.
- Tumor targeted CD28 bispecific antibody can also cooperate with checkpoint inhibitors anti-PD-1/PD-L1 to mediate enhanced T cell activation in vitro.
- In mouse SK-OV3/hPBMC xenograft tumor model, tumor-targeted CD28 bispecific antibody B7H3×CD28 can synergize with masked HER2×CD3 Powerbody ADG138 to mediate strong antitumor efficacy.
- CD28-masked tumor-targeted bispecific antibodies are further developed using SAFEbody technologies to increase tumor specificity by conditional activation in the TME to reduce on-target off-tumor toxicities and prevent systemic cytokine release syndrome.

Contact information: peter_luo@adagene.com